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Abstract—In recent times, the unprecedented surge in the
Coronavirus disease 2019 (COVID-19) due to the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to
several attempts at understanding and containing the outbreak
of the pandemic as well as to ultimately eradicate it. Steps taken
so far include encouraging the wearing of face masks and shields,
municipality restrictions such as work-from-home orders, the
development of vaccines by health research institutions among
others. It is widely believed that the main mode of transmission
of the virus is from human to human. In this paper, we present
the multi-class classification and modeling of the hospitalization
status of COVID-19 patients by using both machine learning
and compartmental mathematical models focusing on critical
factors like hospital stay-days (SDs) and admission type based
on severity of illness. The classification of hospitalization status
of COVID-19 patients is necessary in order to know priority
cases and give them prompt attention. Two key machine learning
algorithms-the decision tree and random forest, are deployed
in our analyses. The Levenberg–Marquardt (L-M) algorithm
was used for parameter estimation for the mathematical model.
From our results, it is easy to identify high risk patients in
order to optimize treatment plans that would lower cost of
treatments, reduce the chances of others getting infected and
assist logistics teams to optimally allocate hospital resources.
Hospital administrations can also be supported in deciding the
number of staff and visitors per patient per day in a facility.

I. INTRODUCTION

COVID-19 can be categorized as a black swan event of
our time. As a result of its massive impact, it requires not
only algorithm-based solutions but also detailed mathematical
modeling and comprehensive analysis [2], [12]. [12] argues
that black swan events can be very difficult to predict using
standard tools of probability and prediction. This is due to the
fact that such events, by definition, lack a large population and
that past sample sizes are hardly available. Moreover, using
statistics based extrapolation techniques on observations of
past events may not be helpful in predicting them as there
might be more chances of increasing human vulnerability to
them.

Data practitioners have performed data mining to effectively
model and predict the patterns of COVID-19 in order to gen-
erate meaningful insights to guide these efforts. For instance,
[4] applied machine learning and natural language processing
models on multiple data sets gotten from various sources

such as PubMed and ArXiv to characterize the evolutionary
trends of recent COVID-19 research themes. This was done
by identifying the latent topics and analysing the publications’
sentiments and similarities from January to May 2020, a
duration widely considered as an early phase in the first-
wave of the pandemic. The paper serves to create awareness
around the level of attention given to high-risk groups, which
comprise mostly of elderly people and people with underlying
conditions. Similarly, a mathematical model of COVID-19
containing asymptomatic and symptomatic classes was put
forward by [3]. This is an attempt to understand the pattern of
the outbreak by analysing the data from the Nigeria Center for
Disease Control (NCDC) and the World Health Organization
(WHO).

A machine learning model for predicting severity prognosis
in patients infected with COVID-19 was presented by [9] with
evaluation of the chest CT of patients showing respiratory
syndromes and positive epidemiological factors for COVID-
19 infection. This is in order to find if correlations exist
between the factors that cause the coronavirus disease. [1]
analyzed COVID-19 related parameters and recommended
various machine learning techniques to predict the pattern
of its outbreak while utilizing real-time data from countries
across the globe. A survey on deep learning applications for
COVID-19 is seen in the work by [11] based on the evaluation
of the current state of deep learning and its key limitations for
COVID-19 treatment research.

In this paper, our objective is to classify the instances
relevant to the critical factors into exactly one of the different
classes vis-à-vis the SDs. This can be considered as a typical
multi-class classification problem. We seek to validate our
model using two machine learning algorithms: decision tree
and random forest. As generally assumed for model pre-
dictions (PREDs), the decision tree generates a set of rules
based on the widely known recursive partitioning (divide and
conquer) approach. On the other hand, the random forest,
a type of ensemble method, combines several decision trees
in order to make its prediction based on majority votes. In
addition, a compartmental mathematical model is formulated
and analysed to study the dynamics of the hospitalization
status of COVID-19 patients.
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In summary, our contributions are the following:
(i) multi-class classification of patients’ SDs in hospitals

using two key machine learning algorithms: decision tree
and random forest;

(ii) formulation of a compartmental mathematical model to
show points of focus in optimizing treatments for high
risk patients;

(iii) parameter optimization using the L-M algorithm and
simulation of the compartmental mathematical model.

The rest of this paper is organized as follows: Section II
presents the materials and methods for the research. Section
III bothers on the compartmental mathematical model. In
Section IV, results from the models are discussed. In Section
V, relevant conclusions are drawn.

II. MATERIALS AND METHODS

A. Data collection

To perform our experiment, we retrieved the Kaggle
COVID-19 pandemic dataset[7] which is open source and
publicly licensed for data scientists and practitioners. It is
noteworthy that the dataset has been redacted in order to
conceal the patients’ identities, hence, making it useful for
modeling while eliminating the underlying bias against any
particular group or health facility.

B. Data preparation

Data preparation is essential before performing data ana-
lytics and modeling. This stage involves pre-processing and
transformation of the raw data into forms that can be readily
available for analysis. For the purpose of generating insights,
we rely mainly on pyspark[8] since it supports high (parallel)
distributed computing for fast data processing. Also, in our
experimental setup, we use Google Collab Notebook with the
runtime set to a GPU Hardware accelerator. In this dataset, the
number of observations is 318438 with 15 critical factors as
well as a multi-class label based on the SDs. Table I presents
the summary statistics of the dataset.

TABLE I
SUMMARY STATISTICS

Target variable Class Counts
SDs 0–10 23604

11–20 78139
21–30 87491
31–40 55159
41–50 11743
51–60 35018
61–70 2744
71–80 10254
81–90 4838

91–100 2765
More than 100 days 6683

Total 318438

C. Critical factors

The following critical factors are considered: hospital (H),
hospital-type (HT), hospital city (HC), hospital region (HR),
available extra rooms in hospital (AERs), department (D),
ward-type (WT), ward-facility (WF), bed-grade (BG), city
code patient (CCP), type of admission (TA), illness severity
(IS), patient-visitors (PVs), age (A), and admission deposit
(AD).

III. COMPARTMENTAL MATHEMATICAL MODEL

A. Assumptions

In order to obtain the model, the following are assumed.
(i) There are three types of hospital admission for COVID-

19 patients, viz. emergency, urgent and trauma.
(ii) There is recruitment in each admission type proportional

to the total hospital capacity.
(iii) Patients can transition from one type of admission to the

other over time.
(iv) Patients are discharged from each type of admission

when they recover or die.

B. Model

The model for the hospitalization status of COVID-19
patients is given as:
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with initial condition (E(0), U(0), T (0)) = (E0, U0, T0),
where

• E(t) is the population size of hospitalized individuals
who have emergency status at time t;

• U(t) is the population size of hospitalized individuals
who have urgent status at time t;

• T (t) is the population size of hospitalized individuals
who have trauma status at time t;

• H = E(t) + U(t) + T (t) is the total bed spaces in the
hospital;

• the λ̄is represent the hospitalization rates (i.e. number of
patients admitted per day) in each admission type;

• the δis represent the discharge rates from each type of
admission due to recovery or death;

• the βijs represent transitions from one type of admission
to another.
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C. Equilibrium state

We obtain the equilibrium state by setting
dE

dt
= 0,

dU

dt
= 0

and
dT

dt
= 0 such that

λ1 −A1E + β21U + β31T = 0;

λ2 + β12E −A2U + β32T = 0;

λ3 + β13E + β23U −A3T = 0;

(2)

where λi = λ̄iH, i = 1, 2, 3, A1 = β12 + β13 + δ1, A2 =
β21 + β23 + δ2 and A3 = β31 + β32 + δ3.

The equilibrium values are obtained as

E = −B1

B
; U = −B2

B
; T = −B3

B
; (3)

for
• B1 = β21β32λ3 + β21A3λ2 + β23β31λ2 + β31A2λ3 −

β23β32λ1 +A2A3λ1;
• B2 = β32A1λ3 + A1A3λ2 + β12β31λ3 − β13β31λ2 +

β12A3λ1 + β13β32λ1;
• B3 = β23A1λ2 + A1A2λ3 − β12β21λ3 + β13β21λ2 +

β12β23λ1 + β13A2λ1; and
• B = β23β32A1 − A1A2A3 + β12β21A3 + β13β21β32 +

β12β23β31 + β13β31A2.

D. Stability analysis

In order to investigate the stability of our model, we set
dE

dt
= E′,

dU

dt
= U ′, and

dT

dt
= T ′ so that we obtain the

Jacobian matrix as follows.
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with characteristic equation

P (λ) =

λ3 +
1

H
(A1 +A2 +A3)λ

2

+
1

H
(A1A2 +A1A3 +A2A3 − β12β21
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Given that
• c11 := (A1 +A2 +A3)/H ,
• c21 := (A1A2 + A1A3 + A2A3 − β12β21 − β13β31 −

β23β32)/H ,
• c31 := −(A1β23β32−A1A2A3+β12β21A3+β13β21β32+

β12β23β31 + β13β31A2)/H ,
• d11 := (c11c21 − c31)/c11,

then the equilibrium state is stable if c11 > 0, c21 > 0, c31 > 0
and d11 > 0 going by the Routh-Hurwitz stability criterion.

IV. RESULTS AND DISCUSSIONS

A. Data analyses

Our data analysis techniques are:
1) Bivariate analyses: Figures 1, 2 and 3 are the bivariate

analyses of the decision tree and random forest, for the actual
and the predicted results, respectively. The bivariate analyses
entails the examination of two variables (SDs/PREDS and
IL = Extreme, Moderate, Minor) in order to determine their
empirical relationship. This allows us to establish the simple
hypotheses of the connection between the variables under test
and the closeness of actual to the predicted results in our
models.

Fig. 1. Bivariate analysis of the actual data

Fig. 2. Bivariate analysis of decision tree predictions
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Fig. 3. Bivariate analysis of random forest predictions

2) Correlation matrices: Figures 4 and 5 are the correla-
tion matrices based on the decision tree and random forest,
respectively. The figures display the correlation coefficients
which depict the correlation between critical factors that affect
a patients’ SDs in a hospital. Here, negative correlation coeffi-
cients indicate negative linear correlation between two factors;
zero (0) indicates no linear correlation; and positive correlation
coefficients indicate positive linear correlation between two
factors. In the figures, we see that all the critical factors with
the exception of the room availability and admission deposit
are positively correlated with the estimated SDs.

Fig. 4. Correlation matrix based on decision tree

Fig. 5. Correlation matrix based on random forest

3) Compartmental mathematical modeling: In order to see
the temporal variation of hospitalization by admission types,
the optimal parameter values of the mathematical model were
estimated from the actual data using the Levenberg–Marquardt
(L-M) algorithm. The simulations of the model with the

obtained values are illustrated in Figure 6 showing that patients
who require urgent attention supersede others by the hundredth
day and Figure 7 showing that patients who require emergency
attention supersede others by the hundredth day.

Fig. 6. Temporal variation of admission types with parameters esti-
mated directly from actual data after optimization using L-M algorithm.
(E0, U0, T0) = (0.37, 0.15, 0.48); λ1 = 0.77, λ2 = 0.32, λ3 = 1.00;
β12 = 0.100, β13 = 0.010, β21 = 0.010, β23 = 0.001, β31 = 0.100,
β32 = 0.010, δ1 = 0.01, δ2 = 0.100, δ3 = 0.001.

Fig. 7. Temporal variation of admission types with parameters esti-
mated directly from actual data after optimization using L-M algorithm.
(E0, U0, T0) = (0.68, 0.98, 0.97); λ1 = 0.24, λ2 = 1.64, λ3 = 0.13;
β12 = 0.35, β13 = 0.97, β21 = 1.92, β23 = 0.32, β31 = 0.26,
β32 = 2.71, δ1 = 0.14, δ2 = 0.01, δ3 = 0.002.

B. Discussions

TABLE II
KEY CLASSIFICATION METRICS FOR MEASURING THE PERFORMANCES OF

THE MACHINE LEARNING MODELS.

Metric Decision Tree Classifier Random Forest
Accuracy/Weighted Recall 0.35411 0.361112

F1/Weighted FMeasure 0.316467 0.311401
Hamming Loss 0.64589 0.638888

True Positive Rate/Recall 0.520559 0.632296
False Positive Rate 0.336413 0.401778

Precision 0.371852 0.375807
FMeasure 0.433816 0.471423

Weighted Precision 0.309697 0.290329
Log Loss 1.69783 1.68902
Runtime 0.27 secs 0.34 secs

Table II presents the key classification metrics for measuring
the performances of the machine learning models. The results
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indicate low precision and high recall for both algorithms with
the random forest slightly better than the decision tree in the
overall performance. However, the decision tree gives a better
runtime. It is widely assumed that for an algorithm, the higher
the precision the more the relevance of the results as a measure
of the quality while higher recall implies that the algorithm
returns more relevant results as a measure of the quantity.
For partially low accuracy, we attribute this to the issue of
imbalanced dataset which could be addressed using Synthetic
Minority Oversampling Technique (SMOTE)[14]. This is done
by duplicating the minority samples in order to improve
the overall model performance. Imbalanced datasets occur
regularly in multi-class classification problems. Dealing with
class imbalance problems have continued to generate interests
in academic research communities due to the difficult nature
of classification caused by imbalanced class distributions[13],
which can lead to poor model performance. However, we omit
the SMOTE approach in order not to alter the objectivity of
our results. For detailed definition of key metrics, readers can
refer to [5].

As for the compartmental mathematical model, parameter
optimization by the L-M algorithm gives the best values
of the parameters for the model. In the early 1960s, the
Levenberg-Marquardt method was created to tackle nonlinear
least squares problems. Least squares difficulties arise when
fitting a parameterized mathematical model to a set of data
points by minimizing a goal stated as the sum of the squares
of the model function and data point errors[6]. In our context,
this algorithm helps to give parameter values that minimize
the influx of COVID-19 patients into hospitals. It also results
to the decrease of extreme cases represented by the trauma
admission type.

V. CONCLUSION

This paper presents the multi-class classification and mod-
elling of the hospitalization status of COVID-19 patients using
the Kaggle COVID-19 dataset. Our findings corroborate the
hypothesis that the attributes of black swan events can make
accurate PREDs difficult. Apart from this phenomenon of the
black swan, the limitations of the mathematical model, e.g.
parameter estimation, is the inappropriateness for a NP-hard
problem which yields optimal results only for a small number
of decision variables [10], [15].

In addition, we observe the issue of imbalanced data which
has the possibility of altering the performance of the algo-
rithms measured based on the accuracy and precision without
completely undermining the objectivity of our multi-class
classification as seen in the validity of the recall.

In future works, our research would be directed towards new
COVID-19 data with regards to geo-location assessment using
spatial models. This is to estimate the likelihood of having
COVID-19 spread with a root cause analysis. We would build
machine learning pipelines to validate the model and measure
the performance of our algorithms to support the decisions of
relevant authorities and hospital managements in mitigating

the impacts of COVID-19. We would examine the possibility
of applying SMOTE to improve the model accuracy in the
context of ongoing COVID-19 research efforts with emphasis
on the complexity of the black swan event that COVID-19
represents.
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