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a b s t r a c t 

With a five dimensional system of ordinary differential equations based on the SIR and SIS models, we 

consider the dynamics of epidemics in a community which consists of residents and short-stay visitors. 

Taking different viewpoints to consider public health policies to control the disease, we derive different 

basic reproduction numbers and clarify their common/different mathematical natures so as to understand 

their meanings in the dynamics of the epidemic. From our analyses, the short-stay visitor subpopulation 

could become significant in determining the fate of diseases in the community. Furthermore, our argu- 

ments demonstrate that it is necessary to choose one variant of basic reproduction number in order to 

formulate appropriate public health policies. 
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. Introduction 

As the world becomes more of a global village with advances

n technology and easier accessibility to different places, it is very

rucial to consider side effects like the spread of diseases. The his-

ory of man is replete with stories of epidemics invading groups of

eople, sometimes resulting in mortality. In the long run, such dis-

ases can disappear and recur in the future or become less deadly

ue to people getting immune. Some notable epidemics in history

nclude the “Spanish” flu (1918–1919) as well as the Black Deaths

1346–1350) which invaded Europe from Asia and recurred for

hree decades afterwards before getting eliminated ( Brauer, 2017 ). 

It is a well established fact that ‘globetrotters’ contribute sig-

ificantly to the global movement of microbes as they serve as a

rucial sentinel population. The displacement of people due to so-

ial and political unrest as well as the natural migration of disease

ectors to new areas also contribute to the worldwide spread of

iseases ( Wilson, 2010; WHO, 2018 ). 

Infectious diseases do not respect border restrictions as their

pread is magnified by rapid urbanization, globalization of trade

nd travels as well as unpredictable climate change and complex-

ties in societal behavior ( MacIntyre et al., 2016 ; Walters et al.,

018 ). All of these factors have practically removed the barriers

hich prevent epidemic transmission among humans and between

umans and animals ( Farrar et al., 2016 ). 
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In the work presented by Parikh et al. (2013) , a synthetic pop-

lation model of the Washington DC metro area was extended to

nclude leisure and business travelers classified as transients. The

nal size of the epidemic among residents was found to be re-

arkably higher when transients were included in the simulation

f a flu-like disease outbreak. According to Chowell et al. (2016) ,

t is crucial to formulate reliable models that embody the basic

ransmission characteristics of specific pathogens and social sce-

arios. They further stated that improved models are required to

apture the variation in early growth dynamics of real epidemics

n order to gain better understanding of the dynamics as they re-

iewed trends in modeling and classifying early epidemic progres-

ion. 

In considering the emerging diseases of wildlife,

ompkins et al. (2015) show that the key drivers of such diseases

re agents from domestic sources and human-assisted exposure

o infectious agents from wild populations. Talking about swine

ever otherwise known as hog cholera, wild boar populations are

nown to serve as reservoir for the disease thereby constituting a

reat challenge for domestic pig farmers, veterinarians and other

takeholders ( Mur et al., 2018; Postel et al., 2018 ). It then becomes

 daunting public health challenge to prevent contacts between

ild boar and local pig populations. 

Epidemiologists are always concerned about the outbreak of

iseases and increasing global travels can easily increase their wor-

ies. For instance, as of March 2015, Japan was confirmed to be to-

ally free of measles. However, that status changed when a new

ave of measles infections was reportedly started by a tourist in

https://doi.org/10.1016/j.jtbi.2019.06.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.06.020&domain=pdf
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Fig. 1. The scheme of the model for the epidemic dynamics of a community with 

short-stay visitor subpopulation. 

r  

i  

w  

l  

v  

i  

n  

u

 

m

 

w  

t  

a  

m  

p  

s  

r  

a

 

a  

c  

i  

c  

s  

2  

fl  

e

 

t

x

w  

p  

t

W  

u  
Okinawa Prefecture in March 2018 ( Mizumoto et al., 2018; Dis-

eases, 2018 ). The threat of measles is a serious one because it has

about the highest basic reproduction number R 0 among the most

commonly known infectious diseases ( van den Driessche, 2017 ). It

has been established that R 0 is a very vital threshold parameter

that theoretically determines whether a disease is eliminated or

becomes endemic after it is introduced into a given population. In

fact, it is widely believed to be one of the most important con-

tributions of mathematics to the field of epidemiology ( Diekmann

et al., 2010; Heffernan et al., 2005; van den Driessche and Wat-

mough, 2002 ). Heffernan et al. (2005) gave a concise summary of

prevalent approaches for formulating R 0 from deterministic models

as well as relevant data. They also looked closely at the use of R 0 in

evaluating diseases like severe acute respiratory syndrome (SARS)

and avian influenza as well as some livestock and vector-borne dis-

eases. van den Driessche (2017) applied the theoretical concepts of

R 0 to various disease models, namely the West Nile virus in birds,

anthrax in animals, cholera and Zika in humans. 

Basically, R 0 is concerned with the initial trend of infective pop-

ulations in ideal situations where very small number of infective

individuals appear and are always surrounded by susceptible in-

dividuals. Before such infectives lose their infectivity, the density

of susceptibles is assumed to be unchanged. In such a biological

context, the basic reproduction number is defined as the expected

number of new cases of an infection caused by an infected indi-

vidual, in a population consisting of susceptible contacts only. 

Following this biological definition, a mathematical theory is

used to derive the basic reproduction number as the spectral

radius of a specific matrix which is called the ”next generation

matrix” (NGM) for a system of ordinary differential equations

governing epidemic dynamics (see Cushing and Diekmann, 2016;

Diekmann et al., 2013 for a complete reference, or see van den

Driessche, 2017 for a recent review). In the frequently referred

paper by van den Driessche and Watmough (2002) , very helpful

results were obtained for disease control having investigated

the actual definition of R 0 based on a compartmental system of

ordinary differential equations. Diekmann et al. (2010) highlighted

the NGM as the foundation for the mathematical definition of R 0 .

As such, their work attempted to demystify issues surrounding

the formulation of NGMs since R 0 s are basically defined as the

spectral radii of such matrices. We should recognize that, as

described above, the basic reproduction number is defined both

biologically/conceptually and mathematically as the supremum for

the expected number of secondary cases in epidemic dynamics,

whereas it is clear that the index R 0 could be important and useful

to characterize the threat of infectious diseases. 

In this paper, we emphasize the role of R 0 from some specific

viewpoints in theoretical discussions. We examine R 0 focused on

(i) transmission of disease within and to the resident population

and (ii) transmission of disease within and to the short-stay visitor

population. Such residents and visitors may be considered to be

either humans or animals as a variety of situations can be consid-

ered. The R 0 focused on residents can be considered as the most

standard case as it may be a bit difficult to really estimate the

impact of short-stay visitors in the spread of diseases. The R 0 fo-

cused on short-stay visitors is very important when the residents

are considered as some vectors in the community which can eas-

ily spread diseases to visitors. That way, we can make inferences

by combining different R 0 s. Besides we shall demonstrate that R 0 
only deals with the initial behavior of infections because the over-

all behavior is governed by the model under consideration. 

2. Assumptions, modeling, and model 

We consider a community consisting of residents and short-stay

visitors. Our focus is on the dynamics of epidemics over a short pe-
iod of time such that the total population size of the community

s taken to be constant, ignoring any change due to birth and death

ithin the period of interest. Also, the resident and visitor popu-

ations are respectively constant. We assume that all immigrating

isitors are susceptible and likely to be infected during their stay

n the community. In addition, infected visitors can carry on their

ormal activities during their stay thus still appearing susceptible

ntil they leave the community. 

Following the stated assumptions, we consider the following

odel governing the epidemic dynamics: 

dx r 

dt 
= −x r (βrr y r + βrv y v ) 

dy r 

dt 
= x r (βrr y r + βrv y v ) − ρy r ;

dz r 

dt 
= ρy r ;

dx v 

dt 
= −x v (βv r y r + βvv y v ) + M − x v 

x v + y v 
E;

dy v 

dt 
= x v (βv r y r + βvv y v ) − y v 

x v + y v 
E, (1)

here the variables x r , y r , z r , x v , and y v are the susceptible resident ,

he infective resident , the recovered resident , the susceptible visitor ,

nd the infective visitor population sizes respectively in the com-

unity at time t . The infection coefficients βrr , βvr , βrv and βvv are

ositive constants. They represent transmissions from infective to

usceptible individuals, respectively from resident to resident, from

esident to visitor, from visitor to resident , and from visitor to visitor

s shown in Fig. 1 . 

Based on the simplest modeling assumption, the interactions

mong individuals within the community follow the concept of

omplete (perfect) mixing. Therefore, the disease transmission

s given by mass-action terms like in the case of the classi-

al Kermack–Mckendrick epidemic dynamics model (for example,

ee Diekmann et al., 2013; Keeling and Rohani, 2008; Martcheva,

015 ). ρ is the recovery rate of the resident population. M is the

ux (velocity) of visitor immigration, while E is the flux of visitor

migration. 

To complete the model, we take the above-mentioned assump-

ions into account such that 

 r (t) + y r (t) + z r (t) = N r ; x v (t) + y v (t) = N v , 

here the total resident population size N r and the total visitor

opulation size N v are constant independent of time. Hence, from

he equations for the x v , y v compartments of the model, we get 

dx v 

dt 
+ 

dy v 

dt 
= M − E = 0 . 

ith these relations from the assumptions of constant subpop-

lation sizes, we can get the following closed three-dimensional
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ystem in terms of ( x r , y r , y v ): 

dx r 

dt 
= −x r (βrr y r + βrv y v ) ;

dy r 

dt 
= x r (βrr y r + βrv y v ) − ρy r ;

dy v 

dt 
= (N v − y v )(βv r y r + βvv y v ) − M 

N v 
y v . (2) 

. The dynamics without cross infection 

.1. The resident subpopulation 

If there is no cross infection such that βv r = 0 and βrv = 0

n the system (1) , the epidemic dynamics with respect to the

esident subpopulation follows the classical Kermack–Mckendrick

IR model (see Diekmann et al., 2013; Keeling and Rohani, 2008;

artcheva, 2015 or any other textbooks of mathematical biol-

gy/epidemiology). Going by the well-known nature of the SIR

odel, we see that (x r , y r , z r ) → (x ∗r , 0 , N r − x ∗r ) with some x ∗r > 0

s t → ∞ for the initial condition given by (x r0 , y r0 , z r0 ) = (N r −
 r0 , y r0 , 0) with y r 0 > 0. The final size of the epidemic, that is,

 r − x ∗r ( > 0) is implicitly determined by 

 r − x ∗r = 

ρ

βrr 
ln 

x r0 

x ∗r 
. (3) 

The basic reproduction number can be defined by 

 rr = 

βrr N r 

ρ
, (4) 

hich is expressed by the product of the expected duration of in-

ectivity of each infective resident 1/ ρ , the resident-resident trans-

ission coefficient βrr , and the resident subpopulation size N r .

hen R rr ≤ 1 , the infective population size y r decreases monoton-

cally towards 0. When R rr > 1 , the temporal variation of y r shows

 peak signifying an outbreak after a period of increase from a suf-

ciently small initial value y r (0) = y r0 > 0 . 

.2. The visitor subpopulation 

The visitor population without cross infection mathematically

orresponds with the classical Kermack–Mckendrick SIS model.

ow, let us consider such an initial condition that 0 < y v (0) � 1 and

 v (0) ≈ N v . Then, for dy v / dt in (2) , 

dy v 

dt 

∣∣∣∣
t=0 

≈
(
βvv N v − M 

N v 

)
y v . 

hus, when the right hand side is positive, that is, if (βvv N 

2 
v ) /M >

 , the infective population size y v increases in an initial period. So

e can obtain the basic reproduction number 

 vv = 

βvv N 

2 
v 

M 

, (5) 

hich appears as the product of the expected duration of each vis-

tor’s stay in the community N v / M , the visitor-visitor transmission

oefficient βvv , and the visitor subpopulation size N v . If R vv < 1 ,

he infective population size decreases in an initial period. Further-

ore, from (2) , we can get 

dy v 

dt 
= βvv y v 

{ 

N v 

(
1 − 1 

R vv 

)
− y v 

} 

(6) 

uch that if R vv ≤ 1 , dy v / dt < 0 for any t > 0. So, y v is monotoni-

ally decreasing if R vv ≤ 1 such that y v → 0 as t → ∞ . Otherwise, if

 vv > 1 , y v → y ∗v = N v (1 − 1 / R vv ) > 0 as t → ∞ . 

When R vv ≤ 1 , the disease is eventually eliminated from the

isitor population due to the outflow of infective visitors which

utweighs the inflow of susceptible visitors. In contrast, when
 vv > 1 , the disease becomes endemic, that is, the disease remains

t any given time after its invasion in the population. In other

ords, the recruitment of infective visitors from the inflow of sus-

eptible visitors compensates for the outflow of infective visitors. 

Since the disease is endemic in the visitor subpopulation when

 vv > 1 , it eventually disperses throughout the resident subpopu-

ation when there is cross infection from visitors to residents, that

s, when βrv > 0. Even if R rr ≤ 1 , cross infections with βvr > 0 and

rv > 0 cause disease outbreak within the resident subpopulation

hen R vv > 1 . In other words, when there are cross infections, dis-

ase outbreak necessarily occurs within the resident subpopulation

s far as R vv > 1 . Consequently, if R rr > 1 or R vv > 1 , disease out-

reak occurs in the resident subpopulation in the presence of cross

nfections, that is, when βvr > 0 and βrv > 0. Hereafter, with the ef-

ect of cross infection, we shall focus on the case when R rr < 1

nd R vv < 1 . 

. Equilibrium states 

There is no oscillatory solution for the system (2) . It is easily

een that y r and y v are positive and finite at any finite time t for

ny y r (0) > 0 and y v (0) > 0. Since dx r / dt < 0 for any positive x r , y r ,

nd y v , x r is monotonically decreasing in time though it cannot be-

ome negative because it is bounded below by zero. Thus x r ( t ) > 0

or any t > 0 and any x r (0) > 0. If y r (0) > 0 and y v (0) > 0, indeed we

ave 

1 

x r 

dx r 

dt 
= −(βrr y r + βrv y v ) 

nd 

 r (t) = x r (0) exp 

[
−

∫ t 

0 

βrr y r (T ) + βrv y v (T ) dT 

]
. 

o, x r must always converge to a non-negative value. Hence, it

an be easily proven that both of y r and y v also converge to non-

egative values. Therefore, ( x r , y r , y v ) always attains some kind of

quilibrium state, which excludes the possibility of oscillatory so-

utions. 

From the equations in (2) , we can obtain the following result: 

emma 4.1. For the system (2) , there are possible equilibria (x ∗r , 0 , 0)

or x ∗r ≥ 0 and (0 , 0 , N v (1 − 1 / R vv )) . The latter equilibrium exists

hen and only when R vv > 1 . 

Next, by the arguments given in Appendix A , we can get the

ollowing result about feasible equilibrium values for (2) : 

heorem 4.2. For the system (2) , 

1. y r → 0 as t → ∞ ; 

2. (x r , y r , y v ) → (x ∗r , 0 , 0) with x ∗r ≥ 0 as t → ∞ if R vv ≤ 1 ; 

3. (x r , y r , y v ) → 

(
0 , 0 , N v 

(
1 − 1 

R vv 

))
as t → ∞ if R vv > 1 when

βrv > 0 . 

As shown in Fig. 2 (b), if R vv > 1 , all residents would have ex-

erienced the infection in the end while there is always a portion

f infective visitors, this gives rise to an endemic situation. On the

ther hand, as we see in Fig. 2 (a), if R vv < 1 , there is a portion of

usceptible residents who would not have experienced the infec-

ion in the end. Also, the visitor population would have no infected

ndividuals in the end. Here, the disease disappears from the com-

unity in the long run. It should be noted that the value of the ba-

ic reproduction number R vv clearly determines the epidemic size

or the resident subpopulation. 

For the system (2) with cross infections, we could not obtain

ny equation(s) like (3) to determine the final size of the epidemic.

owever, we can get the following analytical estimation going by

he proof shown in Appendix B : 
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Fig. 2. Numerical examples of temporal variation of system (2) . (a) (R rr , R vv , R v r , R rv ) = (0 . 75 , 0 . 50 , 0 . 05 , 32 . 73) ; (b) (R rr , R vv , R v r , R rv ) = (0 . 75 , 1 . 50 , 0 . 08 , 56 . 69) . Com- 

monly, N r = 10 0 0 0 0 . 0 0 , N v = 10 0 . 0 0 , ρ = 0 . 14 , M = 20 . 00 , (x r (0) , y r (0) , y v (0)) = (99990 . 0 , 10 . 0 , 0 . 0) . R v r := βv r N v /ρ, R rv := βrv N r N v /M. 

Fig. 3. The dependence of the final size of susceptible resident population x ∗r on the initial size of infective resident population y r (0) and on β rr . (a) βrr = 2 . 0 × 10 −5 , 

R rr = 10 . 0 , (x r (0) , y r (0) , y v (0)) = (N r − y r0 , y r0 , 0 . 0) ; (b) (x r (0) , y r (0) , y v (0)) = (99990 . 0 , 10 . 0 , 0 . 0) . The horizontal axis in (b) shows the value of R rr which is a function of 

β rr as given by (4) . Commonly, N r = 10 0 0 0 0 . 0 , N v = 10 0 . 0 , ρ = 0 . 2 , M = 0 . 5 , βv r = 1 . 6 × 10 −4 , βrv = 1 . 0 × 10 −5 , βvv = 4 . 0 × 10 −5 , R vv = 0 . 8 , R v r = 0 . 08 , R rv = 200 . 0 . 
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Theorem 4.3. As for the state (x ∗r , 0 , 0) feasible for the system

(2) when R vv ≤ 1 , the value x ∗r necessarily satisfies x ∗r < x 
upper 
r de-

fined by 

x upper 
r := 

(
1 

R rr 
+ 

M 

ρN v 

1 − R vv 

R rr 

)
N r . (7)

The value x r cannot approach any value beyond x 
upper 
r from any initial

state with y r (0) > 0 or y v (0) > 0 . 

This result can be confirmed by the numerical calculations

shown in Figs. 3 and 4 . 

Although the critical value x 
upper 
r given in Theorem 4.3 is inde-

pendent of the initial condition of the system (2) , the numerical

result given in Fig. 3 (a) explicitly indicates that the final size x ∗r 
itself depends on the initial condition. This is similar to a charac-

teristic of the standard Kermack–McKendrick SIR model. Also, the

numerical results given in Fig. 4 indicates that the final size x ∗r is

significantly affected by interactions with the visitor subpopulation

as mathematically implied by Theorem 4.2 . 
. The basic reproduction numbers 

We discuss in this section how the different basic reproduction

umbers can be mathematically derived for the model (2) . Subse-

uently, going by their meanings from the perspective of modeling,

e examine how they are different and what nature they have in

ommon (for such possibly different formulas for basic reproduc-

ion number, see the arguments in Brauer et al., 2016; Cushing and

iekmann, 2016; van den Driessche, 2017 ). 

.1. The basic reproduction numbers in terms of each subpopulation 

At first, let us consider a public health policy geared towards

ontrolling the disease among residents. Then, it is necessary to

valuate the basic reproduction number which is defined as the in-

ex about the possibility of the disease spread within the resi-

ent population. As shown in Appendix C , making use of the NGM

ith the theory given by van den Driessche and Watmough (2002) ,

an den Driessche et al. (2008) , we can derive the following basic

eproduction number for the model (2) when R vv < 1 : 
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Fig. 4. The dependence of the final size of susceptible resident population x ∗r on βvv and on M . (a) βrr = 2 . 0 × 10 −5 , R rr = 10 . 0 ; (b) βrr = 3 . 0 × 10 −6 , R rr = 1 . 50 ; (c) βrr = 

1 . 5 × 10 −6 , R rr = 0 . 75 . The horizontal axes show the values of R vv which is a function of βvv for the upper figures with M = 0 . 5 and that of M for the lower ones 

with βvv = 4 . 0 × 10 −5 as given by (5) . Commonly, N r = 10 0 0 0 0 . 0 , N v = 10 0 . 0 , ρ = 0 . 2 , βv r = 1 . 6 × 10 −4 , βrv = 1 . 0 × 10 −5 , R v r = 0 . 08 , R rv = 200 . 0 , (x r (0) , y r (0) , y v (0)) = 

(99990 . 0 , 10 . 0 , 0 . 0) . 

R  

w

B

w  

a  

s  

i  

w  

t  

t  

a  

s  

e  

t  

r  

w  

o  

d  

v

 

i  

m

R

A  

b  

i  

a  

e  

i  

i  

t  

o  

p  

t  

L  

v  

t  

c  

s  

b  

s  

o  

c  

i

 

c  

p  

s  

t  

s  

o  

t  

m  

g  

b  

s  

t  

f

 

t  

t  

d  

u

(

 0 | r = R rr 

(
1 + 

R vv 

1 − R vv 
B 

)
= R rr + 

R rv R v r 

1 − R vv 
(8)

ith 

 = 

βrv βv r 

βrr βvv 
; R v r = 

βv r N v 

ρ
; R rv = 

βrv N v N r 

M 

, 

here B expresses the ratio of the infectivity between residents

nd visitors ( inter-subpopulation infection ) to the infectivity within

ubpopulations ( intra-subpopulation infection ). Larger B means that

nfections between subpopulations are more significant than those

ithin them. R rv can be regarded as the expected number of infec-

ive residents that a single infective visitor can produce, assuming

hat every contact to the resident is always to the susceptible. It

ppears as the product of the expected duration of each visitor’s

tay in the community N v / M , the visitor-resident transmission co-

fficient βrv , and the resident subpopulation size N r . Conversely,

he expected number of infective visitors that a single infective

esident can produce, assuming every contact to the visitor is al-

ays to the susceptible, is R v r which is expressed by the product

f the expected duration of the infectivity of each infective resi-

ent 1/ ρ , the resident-visitor transmission coefficient βvr , and the

isitor subpopulation size N v . 

The basic reproduction number R 0 | r can be translated based on

ts conceptual definition as similarly argued in ( Cushing and Diek-

ann, 2016 ): The formula (8) can be rewritten as 

 0 | r = R rr + R rv 

∞ ∑ 

k =0 

R 

k 
vv R v r for R vv < 1 . 

s illustrated in Fig. 5 , the first term R rr means the expected num-

er of secondary infective residents produced by the initial single

nfective resident, which may be regarded as the secondary cases

rising from direct infection. In contrast, the second term adds the

xpected number of secondary infective residents produced by the

nfective visitors who can be regarded to have the source of their
nfection traced back only along the line of infective visitors to

he initial single infective resident. From the biological definitions

f R v r , R vv , and R rv , the initial single infective resident is ex-

ected to produce R v r infective visitors, and subsequently each of

hese infective visitors is expected to produce R vv infective visitors.

ooking at the furtherance of the infection process only within the

isitor subpopulation caused by the initial single infective resident,

he simple addition of those new infective visitors produced by the

ascade of infections results in R v r + R vv R v r + R 

2 
vv R v r + · · · . Then

ince R rv is the expected number of infective residents produced

y a single infective visitor, we see that the product of R rv and this

um can be consequently regarded as the expected number of sec-

ndary infective residents produced by the infective visitors who

an have the root of their infection traced back to the initial single

nfective resident. 

We remark that R 0 | r → ∞ as R vv increases towards 1. This

ould be regarded as reasonable because we have clarified in the

revious sections that the whole resident subpopulation is neces-

arily infected if R vv > 1 . Indeed, applying this translation about

he meaning of the formula (8) for the case when R vv ≥ 1 , the ba-

ic reproduction number would be divergent due to the divergence

f the sum R v r + R vv R v r + R 

2 
vv R v r + · · · . It should be remarked

hat such divergence of the basic reproduction number does not

ean that the actual basic reproduction number would be diver-

ent. It simply means that the supremum for the expected num-

er of secondary cases in the epidemic dynamics does not exist,

o that the situation could be regarded as highly threatening as

he disease spreads in the resident subpopulation. This is the same

or the situation with R vv > 1 as mentioned above. 

In contrast, when we consider a public health policy for con-

rolling the disease among visitors, it is necessary to evaluate

he basic reproduction number R 0 | v which is defined as the in-

ex about the possibility of the disease spread in the visitor pop-

lation. The process for deriving R 0 | v is similar to that of R 0 | r 
 Appendix C ): 
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Fig. 5. Decomposition of the basic reproduction numbers R 0 | r and R 0 | v defined by (8) and (9) . 
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R 0 | v = R vv 

(
1 + 

R rr 

1 − R rr 
B 

)
= R vv + 

R rv R v r 

1 − R rr 

= R vv + R v r 

∞ ∑ 

k =0 

R 

k 
rr R rv for R rr < 1 . (9)

A similar translation is applicable for (9) like the one for R 0 | r 
(see Fig. 5 ). We remark again that R 0 | v → ∞ as R rr increases to-

wards 1, which can be interpreted as a consequence due to the

divergence of the sum R rv + R rr R rv + R 

2 
rr R rv + · · · for R rr ≥ 1. This

scenario is different from the previous one because the infective

residents eventually disappear in the end for R rr > 1 after every

resident is infected and recovers. However, we need to recall that

the basic reproduction number is defined as the expected number

of secondary cases in the conceptually supremum case for the sub-

sequent infections. Thus, this result can be understood as the case

when the basic reproduction number of the resident subpopula-

tion corresponding to R rr is kept beyond 1. As such, the visitor

subpopulation is regarded as always being exposed to infective res-

idents by cross infection (which corresponds to the divergence of

the above-mentioned sum). This situation could indicate that the

threat of disease spread in the visitor subpopulation is enormous. 

Note that the basic reproduction numbers R 0 | r and R 0 | v may

be specifically called ‘type reproduction numbers’ as in the termi-

nology of ( Heesterbeek and Roberts, 2007; Roberts and Heester-

beek, 2003 ) because we are interested only in the total number

of expected secondary infections in each subpopulation originating

from an infective individual within the same subpopulation (also

see Lewis et al., 2019; Smith et al., 2007; van den Driessche, 2017;

Yakob and Clements, 2013 ). 

5.2. Comparison of the basic reproduction numbers 

The basic reproduction numbers R 0 | r and R 0 | v are basically dif-

ferent but have a common critical nature shown in the following

theorem: 

Theorem 5.1. The condition R 0 | r < 1 holds if and only if R 0 | v < 1 . 

Therefore the condition R 0 | r > 1 holds if and only if R 0 | v > 1. This

theorem can be easily proven by the definitions of R 0 | r and R 0 | v 
given by (8) and (9) . As a special case, we can consider the critical

condition R 0 | r = 1 and R 0 | v = 1 , which lead to the following corol-

lary: 

Corollary 5.1.1. There is a set of values R rr and R vv each less than 1,

say (R rr , R vv ) = (R 

∗
rr , R 

∗
vv ) , such that R 0 | r = 1 and R 0 | v = 1 . The set

is defined by (
1 

R 

∗
rr 

− 1 

)(
1 

R 

∗
vv 

− 1 

)
= B for R rr < 1 and R vv < 1 . 

The dependence of R 0 | r and R 0 | v on R rr and R vv is shown in

Fig. 6 . It is quite clear from the figure that even if R rr < 1 and
 vv < 1 , as far as there is cross infection, the basic reproduction

umber for each subpopulation can become greater than unity si-

ultaneously. Furthermore, Fig. 6 explicitly shows that as the ef-

ect of cross infection becomes stronger (i.e., for larger B), the ba-

ic reproduction numbers are more likely to become greater than

nity. 

Now, as derived in Appendix C , we can consider an additional

asic reproduction number given by 

 0 | c = 

R rr + R vv + 

√ 

( R rr + R vv ) 2 − 4 R rr R vv (1 − B) 

2 

(10)

= 

R rr + R vv + 

√ 

( R rr + R vv ) 2 + 4( R rv R v r − R rr R vv ) 

2 

. 

lthough this basic reproduction number R 0 | c may be the one

ormally derived by the NGM for the system (2) , the formula

10) could not be translated by the conceptual definition of basic

eproduction number as we did for R 0 | r and R 0 | v . Hence, in this

aper we use R 0 | c only as a reference index for the other basic re-

roduction numbers. 

As numerically shown in Fig. 7 , although the three basic repro-

uction numbers R 0 | r , R 0 | v , and R 0 | c have different values from each

ther, the critical condition is identical. 

heorem 5.2. The condition R 0 | c < 1 holds if and only if R 0 | r < 1 (i.e.,

 0 | v < 1 ) when R rr < 1 and R vv < 1 . 

As mentioned in ( Cushing and Diekmann, 2016 ) and other liter-

ture, independent of the formula of the basic reproduction num-

er, the critical condition that it is equal to unity is mathematically

dentical as long as it is well-defined. 

orollary 5.2.1. The condition R 0 | c = 1 is mathematically equivalent

o the condition R 0 | r = 1 ( R 0 | v = 1 ). 

Moreover, we can find the following mathematical result about

heir order ( Appendix D ): 

orollary 5.2.2. When R 0 | r < 1 and R 0 | v < 1, R 0 | c > R 0 | r and

 0 | c > R 0 | v . When R 0 | r > 1 or R 0 | v > 1, R 0 | c < R 0 | r and R 0 | c < R 0 | v . 

It is clearly undetermined which is the larger between R 0 | r and

 0 | v because from (8) and (9) , they are symmetric in terms of R rr 

nd R vv . Their relative values therefore depend on the values of

 rr and R vv . In contrast, the above corollary shows that R 0 | c is nec-

ssarily larger than R 0 | r and R 0 | v when R 0 | r < 1 and R 0 | v < 1, where

ither R 0 | r or R 0 | v is less than unity if and only if the other is less

han unity as we see in Theorem 5.1 . When R 0 | r > 1 or R 0 | v > 1, R 0 | c
s necessarily smaller than R 0 | r and R 0 | v . 

From the standpoint that the basic reproduction numbers R 0 | r 
nd R 0 | v are more practical compared to R 0 | c , we can remark that

 0 | c , which would be frequently/conventionally used as the math-

matically derived basic reproduction number, appears to overesti-

ate the basic reproduction number for each subpopulation when
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Fig. 6. Classification of the region (R rr , R vv ) in terms of the values of R 0 | r and R 0 | v . (a) B < 1 ; (b) B = 1 ; (c) B > 1 . The boundary corresponds to the set of (R rr , R vv ) = 

(R 

∗
rr , R 

∗
vv ) defined in Corollary 5.1.1 with Theorem 5.1 . 

Fig. 7. Differences in the values of R 0 | r , R 0 | v and R 0 | c given by (8), (9) and (10) with B = 2 . 0 . (a) R vv = 0 . 6 ; (b) R rr = 0 . 1 . The three curves intersect when they take the 

value of unity. 
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t is smaller than unity while underestimating it when it is larger

han unity. 

When a disease is imported into the community by tourists or

ther short term visitors, R 0 | r can be reasonably measured in a

id to protect the residents. Actually, the features of the residents

ould be identified more easily than those of the visitors. In con-

rast, R 0 | v could be important and have to be practically evaluated

rom the standpoint of a specific kind of visitor subpopulation. For

nstance, when the visitors are prone to a particular kind of dis-

ase to which the residents in the community are characteristi-

ally immune though they can facilitate its spread. Furthermore,

ince the basic reproduction number R 0 | c corresponds to the ex-

ected number of secondary cases summed up for both resident

nd visitor subpopulations, it would be an unsatisfactory overesti-

ation for discussing the prevention, the intervention, or the con-

ainment of the spread of a transmissible disease in the kind of

ommunity we consider. Moreover, R 0 | c is quite tricky to estimate

iven the contrasting peculiarities of the two subpopulations: the

ttributes of residents are relatively easier to measure compared to

hose of visitors who are only around in the community for a short

eriod. 
. Concluding remarks 

It is obvious that some kind of control measures need to be put

n place to mitigate the effects of disease transmission in a com-

unity with visitor population. The most obvious measure might

e to control the visitor population size, N v . However, it would be

qually effective to control the flux, that is, the inflow and out-

ow, M and E . A sufficiently large M (and E ) means the duration of

tay N v / M � 1 so as to make R vv = (βvv N 

2 
v ) /M � 1 which guaran-

ees the suppression of disease spread. For the purpose of clarity,

 large M implies large visitor movements. As stated earlier, reduc-

ng the visitor population size will be very effective although it is

n general quite difficult to achieve within a country except in con-

erved areas. For transnational human movements, visa application

rocesses can be tightened but in a world of growing globalization,

hat might be counterproductive. 

The dynamics of swine fever, which is endemic and of ma-

or concern in the global hog business, is a very good exam-

le which corresponds to our model since there is the possibil-

ty of cross infection within and between domestic pig and wild

oar populations such that we have βrr > 0, βvr > 0, βrv > 0 and
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Fig. 8. Numerical examples of the temporal variation of the system (2) . (a) (x r (0) , y r (0) , y v (0)) = (99990 . 0 , 10 . 0 , 0 . 0) ; (b) (x r (0) , y r (0) , y v (0)) = (10 0 0 0 0 . 0 , 0 . 0 , 1 . 0) . Com- 

monly, B = 2 . 0 , R rr = 0 . 4 , R vv = 0 . 5 , R rv = 16 . 90 , R v r = 0 . 02 , R 0 | r = 1 . 200 , R 0 | v = 1 . 167 , R 0 | c = 1 . 084 . 
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βvv > 0. It is established that the disease is transmitted both di-

rectly as stated earlier and indirectly (through polluted carcasses,

food waste, or vehicles and equipment). For pig farm holders, the

value of the basic reproduction number R 0 | r is very critical. To

make sure it is kept as low as possible, the following are very cru-

cial: vaccination (though there are still knowledge gaps) and con-

trol measures like proscription of swill feeding, isolation of pigs

before introduction into stock, culling and thorough disinfection of

all hogs on affected farms, proper disposal of carcasses, homoge-

nized strict import approach for live pigs and pork, management of

wild boars and prevention of contacts between local pigs and wild

boars ( Mur et al., 2018; Postel et al., 2018; Sánchez-Cordón et al.,

2018 ). 

For the model we considered, the basic reproduction num-

ber can be viewed from different perspectives depending on the

focus of public health policy makers. Any mathematical vari-

ant of the basic reproduction number, namely R 0| r and R 0| v , can

be said to be the supremum of the expected number of sec-

ondary infections which keeps changing with the effects of new

infections. 

6.1. Effects of cross infection 

From the results obtained in the previous sections, we can say

that even when R rr and R vv are small, there could be disease

outbreak in the subpopulations given sufficiently high cross infec-

tions. This implies that even without outbreak in isolation, when

the subpopulations have contacts with each other, there is always

a likelihood of outbreak. Such a case is numerically demonstrated

by Fig. 8 for our model (2) . Due to the small values of R rr and

R vv , it is likely that the infective population size decreases in an

initial period within the subpopulation where the initial infective

appears. However, since the basic reproduction number can go be-

yond unity when there is cross infection, an outbreak of disease

appears after a time lag. This kind of time lag in the temporal vari-

ation later leading to disease outbreak would likely cause delays

in policy/social/sanitary measures against disease invasion in the

community. 

To measure the contribution of cross infection on the basic

reproduction number for each subpopulation, we may use the
ollowing indices: 

ξr := 

R 0 | r − R rr 

R rr 
= 

R 0 | r 
R rr 

− 1 = 

R rv R v r 

1 − R vv 

1 

R rr 
for R 0 | r ;

v := 

R 0 | v − R vv 

R vv 
= 

R 0 | v 
R vv 

− 1 = 

R rv R v r 

1 − R rr 

1 

R vv 
for R 0 | v . 

t can be easily found that if R vv > R rr , then ξ r > ξ v . This means

hat the effect of cross infection on the resident subpopulation is

ore serious as the isolated visitor subpopulation has the larger

asic reproduction number for the disease. Conversely, we can say

hat the effect of cross infection on the visitor subpopulation is

ore serious when the isolated resident subpopulation has the

arger basic reproduction number for the disease. Intuitively, these

esults are very much acceptable. 

.2. Application for malaria 

Malaria is a disease of global relevance as it has been a key

oncern in almost 100 countries of the world. Interestingly, it is

reventable but its control has proven to be something which re-

uires serious attention as drug-resistant strains of the plasmod-

um species, the cause of malaria, have been known to emerge. In-

ffective vaccination programmes have also been known to result

o more fatal outbreaks of this disease transmitted by the female

nopheles mosquitoes to humans after being infected when they

ite infective humans ( Cowman et al., 2016 ). 

In order to apply our model for malaria, humans can be viewed

s residents while mosquitoes can be regarded as visitors. The re-

ruitment of mosquitoes can be seen as their influx into the vis-

tor subpopulation while the effective elimination of mosquitoes

y the use of insecticides or through other means can be taken

s leading to their outflux from the visitor subpopulation. No-

ably, for malaria, there are generally no direct human-human

nd mosquito-mosquito transmissions, so intra-subpopulation in-

ections do not exist, that is, βrr = βvv = 0 . Then, we have 

 0 | r = R 0 | v = 

βrv N v N r 

M 

βv r N v 

ρ
= R rv R v r . (11)

anaging βvr and βrv implies taking some measures to control

osquitoes as they both have direct effects in the outbreak of
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alaria. N r and N v also have direct effect, but more attention

hould be paid to the latter because of its square order con-

ribution on the basic reproduction numbers. If we can control

he mosquito density N v so that R 0 | v < 1, the outbreak of malaria

ould be successfully suppressed. This argument could be extended

o other vector-borne diseases like Dengue fever, Lyme disease,

est Nile fever, etc. 

Taking a different standpoint where we consider mosquitoes as

esidents and humans as visitors, for example, the case of some

xplorers in a mosquito infested environment, the expected dura-

ion of stay N v / M appears very crucial. A sufficiently short dura-

ion of stay could help manage the epidemic effectively. Also, an

nough low contact rate with the mosquito population would be

ery vital. This can be achieved by control measures like the use

f insecticide-treated nets (ITN) and mosquito repellents. Another

ontrol measure might be the use of vaccination by the visitors to

ake them immune to being infected. 

.3. Application for avian influenza 

Horimoto et al. (2005) predicted that a new influenza pan-

emic would occur following outbreaks of the H5 and H7 sub-

ypes of avian influenza A in birds and humans. Infection in

umans was known to occur through very close contact with

irds which had been infected while bird to bird infections

ere obviously easier. Using the concept of the basic reproduc-

ion number, Liu et al. (2015) investigated the dynamics of a

ird-to-human transmission model with regards to human psy-

hology vis-à-vis avian influenza. Their outcome shows that if

here is an outbreak, “the saturation effect within avian popu-

ation and the psychological effect in human population cannot

hange the stability of equilibria but can affect the number of in-

ected humans”. Liu and Fang (2015) formulated a two-host dy-

amic model for H7N9 virus infection in both bird and human

opulations. Critical transmission parameters were computed us-

ng nationwide surveillance data of infections in mainland China.

he analysis of their model shows that the long term preven-

ion of human H7N9 infections is necessitated by culling infected

irds. 

From the perspective of our model, we take humans as res-

dents and birds as short-stay visitors such that βrr ≈ 0, βvr ≈ 0,

rv > 0 and βvv > 0 since human-to-bird influenza transmissions

re almost impossible and human-to-human infections are quite

are. So, we have B = 0 and R 0 | v = R vv . Otherwise, taking domes-

icated birds as residents and wild birds as short-stay visitors, we

ave βrr > 0, βvr ≈ 0, βrv > 0, and βvv > 0. In this case, B = 0 and

 0 | r = R rr . 

Just like in the case of malaria, one effective control mea-

ure for avian influenza would be to ensure that infected birds

re kept away as much as possible since R vv depends on the
quare value of the bird population density. For wild birds that mi-

rate seasonally to a local community, measures can be taken to

eep them off. For poultry and other possible local hosts of avian

nfluenza, screening or culling as established by ( Liu and Fang,

015 ) can help in preventing the disease outbreak in the local

ommunity. 

.4. Relationship with metapopulation dynamics 

In the past couple of decades, most papers related to theoreti-

al/mathematical studies of the global spread of transmissible dis-

ases were focused on the mobility of humans over various pop-

lations or patches (see Arino and van den Driessche, 2006; Col-

zza and Vespignani, 2008; Gong and Small, 2018; Saito et al.,

018; Soriano-Paños et al., 2018; Wang and Wu, 2018 and refer-

nces therein). Frequently, such movements correspond to migra-

ion as opposed to temporary visits for a finite period as we con-

ider in our case, or to human transportation on a large spatial

cale during relatively long trips. Our scenario of short visits does

ot fully capture the metapopulation framework in most of those

revious works but the interaction between the resident and visi-

or subpopulations has some semblance of metapopulation behav-

or. Indeed, the two subpopulations may be regarded as patches

etween which diseases can spread. This may be said to display

ome metapopulation dynamics in the context of modern trends

n social networks ( Hackl and Dubernet, 2019; Wang et al., 2018 )

hile metapopulation dynamics have been generally based on a

patially heterogeneous structure of population distribution ( Arino

nd van den Driessche, 2006; Ball et al., 2015; North and Godfray,

017 ). 

In this paper, we have considered a community under epidemic

nteraction with short-term visitors. We do not explicitly consider

etapopulation dynamics although the visitors in our model can

e regarded as the epidemic agents in terms of interaction be-

ween “patches” in a metapopulation. In this sense, the analysis

f our model can be regarded as being about the likelihood of

he spread of a transmissible disease in a community which cor-

esponds to a patch. It is necessary to discuss such a likelihood

ver a metapopulation especially when an transnational or global-

cale outbreak is concerned, whereas even in such a case, each lo-

al community in the metapopulation must consider the likelihood

f spread within the community in order to prevent or contain

t as mentioned in the last part of Section 5.2 . This paper could

e regarded as a mathematical modeling work devoted to such a

roblem. 
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 a positive value. Therefore, x r → 0 as t → ∞ . Then we have d y r /d t ≈
e that y r → 0. 

(A.1) 

 v ) ≤ 0 with βvv > 0, that is, if R vv ≤ 1 , then dy v / dt < 0 for t 	 1 so that 

 end up leaving the community such that (x r , y r , y v ) → (x ∗r , 0 , 0 , 0) with 

n (A.1) corresponds to a logistic equation. This implies that 

ents prove that 

e can easily get the following Jacobian matrix for the system (2) about 

 

0 , 0 , N v (1 − 1 / R vv ) ) : 

1 
R vv 

)

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (A.2) 

1 / R vv ) . This establishes that, if R vv > 1 , the equilibrium point 

e way, making use of the eigenvalue analysis about the Jacobian matrix 

m point (0,0,0) is unstable if R vv > 1 . 

 (x ∗r , 0 , 0) with x ∗r > 0 as t → ∞ , being proved by Theorem 4.2 . We can 

(x ∗r , 0 , 0) with x ∗r > 0 : 

(B.1) 

(B.2) 

(B.3) 
Appendix A. Proof for Theorem 4.2 

1. Suppose that y r → y ∗r > 0 . Then, if x r → x ∗r > 0 , we have 

dx r 

dt 
≈ −x ∗r (βrr y 

∗
r + βrv y v ) < 0 for t 	 1 . 

This is contradictory to the precondition for x r to converge to

−ρy ∗r < 0 for t 	 1. Since this is contradictory again, we conclud

2. Since y r → 0 as t → ∞ , we have 

dy v 

dt 
≈ βvv y v 

(
βvv N 

2 
v − M 

βvv N v 
− y v 

)
for t 	 1 when βvv > 0 ;

dy v 

dt 
≈ − M 

N v 
y v for t 	 1 with βvv = 0 . 

From these results, we can easily find that, if (βvv N 

2 
v − M) / (βvv N

y v → 0 as t → ∞ . Also, y v → 0 as t → ∞ when βvv = 0 . 

These arguments show that, when R vv ≤ 1 , all infective visitors

x ∗r ≥ 0 as t → ∞ . 

3. If (βvv N 

2 
v − M) / (βvv N v ) > 0 with βvv > 0, that is, if R vv ≤ 1 , the

y v → y ∗v = 

βvv N 

2 
v − M 

βvv N v 
> 0 as t → ∞ . 

Thus, for y r → 0 as t → ∞ , we have 

dx r 

dt 
≈ −βrv x r y 

∗
v for t 	 1 . 

Hence, when βrv > 0, we see that x r → 0 as t → ∞ . These argum

(x r , y r , y v ) → 

(
0 , 0 , 

βvv N 

2 
v − M 

βvv N v 

)
as t → ∞ . 

This result can also be supported by the local stability analysis. W

the equilibrium point (x ∗r , y ∗r , y ∗v ) = 

(
0 , 0 , 

(
βvv N 

2 
v − M 

)
/ (βvv N v ) 

)
= (

J 

(
0 , 0 , N v 

(
1 − 1 

R vv 

))
= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−βrv N v 

(
1 − 1 

R vv 

)
0 0 

βrv N v 

(
1 − 1 

R vv 

)
−ρ 0 

0 

Mβv r 
βvv N v 

−N v 

(
1 −

which has eigenvalues −βrv N v (1 − 1 / R vv ) , −ρ, and −N v (1 −
( 0 , 0 , N v (1 − 1 / R vv ) ) exists locally asymptotically stable. In the sam

for the linearization of (2) , it can also be proven that the equilibriu

Appendix B. Proof for Theorem 4.3 

Now, let us consider the case that R vv ≤ 1 , when (x r , y r , y v ) →
derive the following Jacobian matrix about the point (x ∗r , y ∗r , y ∗v ) = 

J(x ∗r , 0 , 0) = 

⎛ 

⎜ ⎝ 

0 −βrr x 
∗
r −βrv x 

∗
r 

0 βrr x 
∗
r − ρ βrv x 

∗
r 

0 βv r N v βvv N v − M 

N v 

⎞ 

⎟ ⎠ 

which can be evaluated using the bottom right 2 × 2 matrix 

J = 

( 

βrr x 
∗
r − ρ βrv x 

∗
r 

βv r N v βvv N v − M 

N v 

) 

whose characteristic equation is given by 

λ2 − ( tr J ) λ + det J = 0 , 

where 

tr J = 

ρ

N r 
(R rr x 

∗
r − N r ) − M 

N v 
(1 − R vv ) 
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a

d

w

B

T visitors ( inter-subcommunity infection ) to the infectivity within subcom- 

m

le if tr J > 0 or det J < 0 . The condition tr J > 0 gives 

x (B.4) 

F

x (B.5) 

S nclude that if (B.4) is satisfied, then (x ∗r , 0 , 0) with x ∗r > 0 is unfeasible. 

S  is, by (7) . Consequently from these arguments, the point (x ∗r 0 , 0) with 

x  0) with x ∗r > 0 must satisfy x ∗r < x 
upper 
r . 

A

 the index of the possibility of the disease spread within the resident 

s d Watmough, 2002; van den Driessche et al., 2008 ), we arrange (2) at 

fi

(C.1) 

t r the resident and the other terms as follows: 

(C.2) 

w  of new infections, and V represents the other factors related to the 

e

F  

M 

N v 
y v 

) 

. (C.3) 

D

0 

0 

r y r0 + βrv y v 0 

) 

. 

A

D

 0 

 

+ 

M 

N v 
0 

N r 0 

) 

. 

T atrices, we have 

F

nd 

et J = 

ρM 

N r N v 
[ R rr (R vv − BR vv − 1) x ∗r + N r (1 − R vv ) ] 

ith 

 = 

βrv βv r 

βrr βvv 
. 

his B expresses the ratio of the infectivity between residents and 

unities ( intra-subcommunity infection ). 

From the theory of local stability, the point (x ∗r , 0 , 0) is unfeasib

 

∗
r > 

(
1 

R rr 
+ 

M 

ρN v 

1 − R vv 

R rr 

)
N r . 

or det J < 0 , we have 

 

∗
r > 

1 − R vv 

R rr [ BR vv + (1 − R vv )] 
N r . 

ince the right side of (B.4) is greater than that of (B.5) , we can co

o we define the critical value x 
upper 
r by the right side of (B.4) , that

 

∗
r > x 

upper 
r is unfeasible. Thus, the feasible equilibrium state (x ∗r , 0 ,

ppendix C. Derivation of R 0| r , R 0| v , and R 0| c 

In order to obtain the basic reproduction number R 0 | r which is

ubpopulation, following the theory given by ( van den Driessche an

rst as follows: 

dy r 

dt 
= x r (βrr y r + βrv y v ) − ρy r ;

dy v 

dt 
= (N v − y v )(βv r y r + βvv y v ) − M 

N v 
y v ;

dx r 

dt 
= −x r (βrr y r + βrv y v ) , 

hen decompose it into the recruitment terms of new infections fo

d X 

dt 
= F ( X ) − V ( X ) , 

here X = (y r (t) y v (t) x r (t)) T . F represents the recruitment rate

pidemic dynamics, so that 

 := 

( 

x r (βrr y r + βrv y v ) 
0 

0 

) 

; V := 

( 

ρy r 
−(N v − y v )(βv r y r + βvv y v ) +

x r (βrr y r + βrv y v ) 

Next, we have the Jacobian matrices of F and V about X : 

D F ( X ) := 

( 

βrr x r0 βrv x r0 βrr y r0 + βrv y v 0 
0 0 0 

0 0 0 

) 

;

 V ( X ) := 

( 

ρ 0 

−βv r (N v − y v 0 ) −βvv (N v − 2 y v 0 ) + βv r y v 0 + 

M 

N v 
βrr x r0 βrv x r0 βr

t the disease-free equilibrium X 0 := (0 0 N r ) 
T , they become 

 F ( X 0 ) := 

( 

βrr N r βrv N r 0 

0 0 0 

0 0 0 

) 

; D V ( X 0 ) := 

( 

ρ 0

−βv r N v −βvv N v
βrr N r βrv 

aking the top left hand corner 2 × 2 matrices in each of the two m

 := 

(
βrr N r βrv N r 

0 0 

)
; V := 

(
ρ 0 

−βv r N v −βvv N v + 

M 

N v 

)
. 

Then, the next generation matrix (NGM) is obtained by 
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(C.4) 

lute value of the eigenvalues of (C.4) , that is, 

model (2) : 

(C.5) 

 

. 

ecause we now consider the basic reproduction number which is the 

bpopulation. The decomposition into F and V should be such that the 

rms are as follows, differently from (C.3) : 

 ρy r 

 

) 

⎞ 

⎟ ⎠ 

. 

(C.6) 

m absolute value of the eigenvalues of (C.6) is expressed as follows: 

 

. 

le community R 0 | c , we should change the decomposition of (C.1) , be- 

ruitment terms of new infections come from both residents and visitors , 

(C.7) 

ed as 

(C.8) 

 by the maximum absolute value of the eigenvalues of (C.7) becomes 

> 0 for the characteristic equation of the NGM K, given by (C.8) . Since 

sily find that necessarily tr K = R rr + R vv < 2 . Next, we can find that 

n that R 0 | c < 1 if R 0 | r < 1. The converse is also true. Then the proof of 

by Theorem 5.1 , the theorem and the corollary hold also for R 0 | v . 
tion (C.8) that f ( R 0 | r ) < 0. If so, it is guaranteed that R 0 | c > R 0 | r . Indeed, 

at 

− R rr ) . 

 R 0 | r , that is, R 0 | r − R rr > 0 . So, given R 0 | r < 1, we have f ( R 0 | r ) < 0 so that 

. This completes the proof. 
K = FV −1 = 

( 

N r [ βrr ( M−βvv N 
2 
v ) + βrv βv r N 

2 
v ] 

ρ(M−βvv N 2 v ) 

βrv N r N v 
M−βvv N 2 v 

0 0 

) 

. 

The basic reproduction number R 0 | r is given by the maximum abso

R 0 | r = max 

{
0 , 

∣∣∣N r [ βrr (βvv N 

2 
v − M) − βrv βv r N 

2 
v ] 

ρ(βvv N 

2 
v − M) 

∣∣∣}. 

Therefore we get the following basic reproduction number for the 

R 0 | r = 

∣∣∣∣R rr R vv (1 − B) − R rr 

R vv − 1 

∣∣∣∣ = R rr 

∣∣∣1 + 

R vv 

1 − R vv 
B 

∣∣∣. 
Since we consider only the case that R vv < 1 , we obtain (8) as R 0 | r

To derive R 0 | v , we should change the decomposition of (C.1) b

index of the possibility of the disease spread within the visitor su

recruitment terms of new infections for the visitor and the other te

F := 

( 

0 

(N v − y v )(βv r y r + βvv y v ) 
0 

) 

; V := 

⎛ 

⎜ ⎝ 

−x r (βrr y r + βrv y v ) +
M 

N v 
y v 

x r (βrr y r + βrv y v

In the way same with that for R 0 | r , the NGM K is obtained as 

K = 

( 

0 0 

βv r N r N v 
ρ−βrr N r 

N 2 v [ βvv (ρ−βrr N r )+ βrv βv r N r ] 

M(ρ−βrr N r ) 

) 

. 

Therefore, the basic reproductive number R 0 | v given by the maximu

R 0 | v = 

∣∣∣∣R rr R vv (1 − B) − R vv 

R rr − 1 

∣∣∣∣ = R vv 

∣∣∣1 + 

R rr 

1 − R rr 
B 

∣∣∣. 
Since we consider only the case that R rr < 1 , we obtain (9) as R 0 | v

In order to derive the basic reproduction number for the who

cause the decomposition into F and V should be such that the rec

differently from those for R 0 | r and R 0 | v : 

F := 

( 

x r (βrr y r + βrv y v ) 
(N v − y v )(βv r y r + βvv y v ) 

0 

) 

; V := 

( 

ρy r 
M 

N v 
y v 

x r (βrr y r + βrv y v ) 

) 

. 

Then the NGM K is now obtained as 

K = 

( 

βrr N r 
ρ

βrv N r N v 
M 

βv r N v 
ρ

βvv N 
2 
v 

M 

) 

. 

Since the characteristic equation of the matrix (C.7) can be express

f (λ) = λ2 − ( R rr + R vv ) λ + R rr R vv (1 − B) = 0 , 

we can easily find that the basic reproductive number R 0 | c given

(10) : 

R 0 | c = max 

{ 

∣∣∣∣∣R rr + R vv ±
√ 

( R rr + R vv ) 2 − 4 R rr R vv (1 − B) 

2 

∣∣∣∣∣
} 

= 

R rr + R vv + 

√ 

( R rr + R vv ) 2 − 4 R rr R vv (1 − B) 

2 

. 

Appendix D. Proofs for Theorem 4.3, Corollaries 5.2.1 and 5.2.2 

For R 0 | c < 1, it is necessary and sufficient that tr K < 2 and f (1) 

we are considering the case that R rr < 1 and R vv < 1 , we can ea

the condition f (1) > 0 is equivalent to R 0 | r < 1. Therefore, it is show

Theorem 5.2 is established, and Corollary 5.2.1 also follows. Going 

To prove Corollary 5.2.2 , we show from the characteristic equa

since R rr R vv (1 − B) = R rr − R 0 | r (1 − R vv ) from (8) , we can find th

f (R 0 | r ) = R 

2 
0 | r − (R rr + R vv ) R 0 | r + R rr R vv (1 − B) = (R 0 | r − 1)(R 0 | r 

Since f (R rr ) = −R rr R vv B < 0 , it is necessarily satisfied that R rr <

R 0 | c > R 0 | r . Going by Theorem 5.2 , it is also established that R 0 | v < 1
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